Intelligent AI Sales Agent
Intelligent AI Sales Agent
An AI-powered sales agent designed to autonomously join scheduled sales calls, assist with sales processes, persuasion, and deal-closing, and automatically send meeting summaries and updates to the team.
Project Brief
What is the Project?
This project is the development of an "Intelligent AI Sales Agent," designed to function as an autonomous virtual team member for B2B sales teams. Its primary role is to actively participate in sales calls, providing real-time support to the human sales representative. The system will be managed through a central dashboard that displays details of all past and upcoming scheduled meetings, serving as a single source of truth for call-related activities and performance.
The Problem (What We Are Solving)
B2B sales cycles are complex and demanding, placing significant pressure on sales representatives to perform consistently at a high level. The current manual approach to sales calls is fraught with inefficiencies and missed opportunities that this project aims to solve:
- In-Call Performance Gaps: Struggles with engaging customers, handling objections, and recalling critical information in real-time.
- Post-Call Administrative Burden: Significant time wasted on manual tasks like writing summaries and updating the CRM.
- Lost Revenue Opportunities: Inefficiency in closing deals and securing follow-ups, often due to missed buying signals.
- Operational & Scalability Issues: Inconsistent call quality across the team and limited accessibility due to time zones.
The Solution (What We Are Building)
We will build an intelligent AI Sales Agent that functions as an active and audible participant in sales calls. This agent will join meetings as a virtual team member, capable of speaking to both the customer and the internal salesperson to guide the conversation, handle administrative queries, and ensure a smooth, professional interaction.
- Act as a Conversational Co-host: The AI can introduce itself, summarize discussions, and explain standard product features.
- Provide Real-Time In-Call Intelligence: Offers private, on-screen support with contextual data and suggested talking points.
- Automate Administrative Tasks: Automatically generates meeting summaries, extracts action items, and updates the CRM.
- Ensure Consistent Quality and Strategy: Standardizes the quality of sales calls by audibly guiding conversations.
- Create a Centralized Hub for Insights: Provides a dashboard with all call data for performance review and coaching.
Core Features
- Autonomous Call Participation
- Conversational Voice Interaction
- Real-time Objection Handling
- Live Transcription & Note-Taking
- Automated Meeting Summaries
- CRM & Calendar Integration
- Analytics & Coaching Dashboard
Technical Specification
Technologies & Tool Stack
Component | Technology | Reasoning |
---|---|---|
Call & Meeting Integration | Zoom API, MS Graph API, Google Calendar API | To schedule and gain access to meetings, manage participants, and get the necessary permissions. |
Telephony & Audio Stream | Twilio | For handling the raw voice stream in and out of the meeting platforms. |
Speech-to-Text (STT) | Google Cloud Speech-to-Text / Deepgram | Essential for converting the live audio stream into text with high accuracy. |
AI Core (The "Brain") | Google Gemini / OpenAI GPT-4o | State-of-the-art LLMs for understanding conversations, recognizing intent, and generating responses. |
Text-to-Speech (TTS) | ElevenLabs / Google Cloud TTS | To provide a natural, human-like voice for the agent. |
AI Memory Stores | Redis, Pinecone, Snowflake | For short-term context recall (Redis), long-term strategy retrieval (Vector DB), and analytics (Data Warehouse). |
Backend Framework | Python (FastAPI) | High-performance framework with an excellent AI ecosystem. |
Database | PostgreSQL / MySQL | To store structured data like user accounts, meeting records, and summaries. |
Frontend (Dashboard) | React / Vue.js | Modern frameworks for building a responsive and interactive user dashboard. |
Deployment | Docker, AWS/GCP | For containerization, consistency, and scalable cloud hosting. |
System Architecture Diagram
Enhanced Building Guide: Technical Implementation Details
Prerequisites & Environment Setup
System Requirements:
- Python 3.9+
- Node.js 18+
- Docker & Docker Compose
- PostgreSQL 14+
- Redis 6+
Development Environment Setup:
# Create project directory
mkdir ai-sales-agent
cd ai-sales-agent
# Initialize Git repository
git init
# Create virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Create project structure
mkdir -p {backend,frontend,docker,scripts,tests}
mkdir -p backend/{app,alembic,tests}
mkdir -p backend/app/{api,core,db,models,services,utils}
Module 1: Foundation & Core Infrastructure
1.1 Backend Setup with FastAPI
backend/requirements.txt
: fastapi==0.104.1
uvicorn[standard]==0.24.0
sqlalchemy==2.0.23
alembic==1.12.1
psycopg2-binary==2.9.9
redis==5.0.1
celery==5.3.4
python-multipart==0.0.6
python-jose[cryptography]==3.3.0
passlib[bcrypt]==1.7.4
twilio==8.10.0
openai==1.3.6
google-cloud-speech==2.21.0
elevenlabs==0.2.26
websockets==12.0
pytest==7.4.3
httpx==0.25.2
Create backend/app/main.py
:
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from fastapi.middleware.cors import CORSMiddleware
from app.api.endpoints import auth, meetings, calls
from app.core.config import settings
from app.db.database import engine, Base
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Create database tables
Base.metadata.create_all(bind=engine)
app = FastAPI(
title="AI Sales Agent API",
description="Intelligent AI Sales Agent Backend",
version="1.0.0"
)
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=settings.ALLOWED_HOSTS,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Include routers
app.include_router(auth.router, prefix="/api/v1/auth", tags=["auth"])
app.include_router(meetings.router, prefix="/api/v1/meetings", tags=["meetings"])
app.include_router(calls.router, prefix="/api/v1/calls", tags=["calls"])
# WebSocket manager for real-time updates
class ConnectionManager:
def __init__(self):
self.active_connections: dict = {}
async def connect(self, websocket: WebSocket, user_id: str):
await websocket.accept()
self.active_connections[user_id] = websocket
logger.info(f"User {user_id} connected")
def disconnect(self, user_id: str):
if user_id in self.active_connections:
del self.active_connections[user_id]
logger.info(f"User {user_id} disconnected")
async def send_personal_message(self, message: str, user_id: str):
if user_id in self.active_connections:
await self.active_connections[user_id].send_text(message)
manager = ConnectionManager()
@app.websocket("/ws/{user_id}")
async def websocket_endpoint(websocket: WebSocket, user_id: str):
await manager.connect(websocket, user_id)
try:
while True:
await websocket.receive_text()
except WebSocketDisconnect:
manager.disconnect(user_id)
@app.get("/health")
async def health_check():
return {"status": "healthy"}
1.2 Database Models
Create backend/app/models/models.py
:
from sqlalchemy import Column, Integer, String, DateTime, Text, JSON, Boolean, ForeignKey
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship
from datetime import datetime
Base = declarative_base()
class User(Base):
__tablename__ = "users"
id = Column(Integer, primary_key=True, index=True)
email = Column(String, unique=True, index=True)
hashed_password = Column(String)
full_name = Column(String)
is_active = Column(Boolean, default=True)
created_at = Column(DateTime, default=datetime.utcnow)
meetings = relationship("Meeting", back_populates="owner")
class Meeting(Base):
__tablename__ = "meetings"
id = Column(Integer, primary_key=True, index=True)
title = Column(String)
description = Column(Text)
start_time = Column(DateTime)
end_time = Column(DateTime)
meeting_url = Column(String)
platform = Column(String) # zoom, teams, meet
status = Column(String, default="scheduled") # scheduled, in_progress, completed
owner_id = Column(Integer, ForeignKey("users.id"))
external_meeting_id = Column(String)
owner = relationship("User", back_populates="meetings")
call_sessions = relationship("CallSession", back_populates="meeting")
class CallSession(Base):
__tablename__ = "call_sessions"
id = Column(Integer, primary_key=True, index=True)
meeting_id = Column(Integer, ForeignKey("meetings.id"))
twilio_call_sid = Column(String)
start_time = Column(DateTime, default=datetime.utcnow)
end_time = Column(DateTime)
status = Column(String, default="active") # active, completed, failed
meeting = relationship("Meeting", back_populates="call_sessions")
transcripts = relationship("Transcript", back_populates="call_session")
class Transcript(Base):
__tablename__ = "transcripts"
id = Column(Integer, primary_key=True, index=True)
call_session_id = Column(Integer, ForeignKey("call_sessions.id"))
speaker = Column(String)
content = Column(Text)
timestamp = Column(DateTime, default=datetime.utcnow)
confidence = Column(String)
call_session = relationship("CallSession", back_populates="transcripts")
class Summary(Base):
__tablename__ = "summaries"
id = Column(Integer, primary_key=True, index=True)
call_session_id = Column(Integer, ForeignKey("call_sessions.id"))
summary_text = Column(Text)
action_items = Column(JSON)
key_insights = Column(JSON)
sentiment_analysis = Column(JSON)
created_at = Column(DateTime, default=datetime.utcnow)
1.3 Configuration Management
Create backend/app/core/config.py
:
from pydantic_settings import BaseSettings
from typing import List
class Settings(BaseSettings):
# Database
DATABASE_URL: str = "postgresql://user:password@localhost/ai_sales_agent"
# Redis
REDIS_URL: str = "redis://localhost:6379"
# JWT
SECRET_KEY: str = "your-secret-key-here"
ALGORITHM: str = "HS256"
ACCESS_TOKEN_EXPIRE_MINUTES: int = 30
# External APIs
TWILIO_ACCOUNT_SID: str
TWILIO_AUTH_TOKEN: str
TWILIO_PHONE_NUMBER: str
OPENAI_API_KEY: str
GOOGLE_CLOUD_PROJECT: str
ELEVENLABS_API_KEY: str
# Meeting platforms
ZOOM_CLIENT_ID: str
ZOOM_CLIENT_SECRET: str
MICROSOFT_CLIENT_ID: str
MICROSOFT_CLIENT_SECRET: str
# App settings
ALLOWED_HOSTS: List[str] = ["http://localhost:3000", "http://127.0.0.1:3000"]
class Config:
env_file = ".env"
settings = Settings()
Module 2: Real-time Processing Engine
2.1 Twilio Integration
Create backend/app/services/twilio_service.py
:
from twilio.rest import Client
from twilio.twiml.voice_response import VoiceResponse, Start, Connect, Stream
from app.core.config import settings
import logging
logger = logging.getLogger(__name__)
class TwilioService:
def __init__(self):
self.client = Client(settings.TWILIO_ACCOUNT_SID, settings.TWILIO_AUTH_TOKEN)
def initiate_call(self, to_number: str, meeting_id: str):
"""Initiate a call to join a meeting"""
try:
call = self.client.calls.create(
url=f"https://your-domain.com/api/v1/calls/twiml/join/{meeting_id}",
to=to_number,
from_=settings.TWILIO_PHONE_NUMBER
)
return call.sid
except Exception as e:
logger.error(f"Failed to initiate call: {e}")
raise
def generate_join_twiml(self, meeting_url: str):
"""Generate TwiML to join meeting and start streaming"""
response = VoiceResponse()
# Start audio streaming
start = Start()
stream = Stream(
url=f"wss://your-domain.com/api/v1/calls/stream",
track="both_tracks"
)
start.append(stream)
response.append(start)
# Connect to meeting
connect = Connect()
connect.conference(meeting_url)
response.append(connect)
return str(response)
2.2 Speech-to-Text Integration
Create backend/app/services/stt_service.py
:
from google.cloud import speech
import asyncio
import json
import logging
from typing import AsyncGenerator
logger = logging.getLogger(__name__)
class STTService:
def __init__(self):
self.client = speech.SpeechClient()
self.config = speech.RecognitionConfig(
encoding=speech.RecognitionConfig.AudioEncoding.MULAW,
sample_rate_hertz=8000,
language_code="en-US",
enable_speaker_diarization=True,
diarization_speaker_count=2,
enable_automatic_punctuation=True,
model="latest_short"
)
self.streaming_config = speech.StreamingRecognitionConfig(
config=self.config,
interim_results=True,
single_utterance=False
)
async def transcribe_stream(self, audio_stream: AsyncGenerator) -> AsyncGenerator:
"""Transcribe audio stream in real-time"""
try:
requests = (speech.StreamingRecognizeRequest(audio_content=chunk)
async for chunk in audio_stream)
responses = self.client.streaming_recognize(
config=self.streaming_config,
requests=requests
)
for response in responses:
for result in response.results:
if result.is_final:
yield {
'transcript': result.alternatives[0].transcript,
'confidence': result.alternatives[0].confidence,
'speaker': self._get_speaker_tag(result),
'timestamp': self._get_timestamp()
}
except Exception as e:
logger.error(f"STT Error: {e}")
raise
def _get_speaker_tag(self, result):
"""Extract speaker information from diarization"""
if result.alternatives[0].words:
return f"Speaker_{result.alternatives[0].words[0].speaker_tag}"
return "Unknown"
def _get_timestamp(self):
"""Get current timestamp"""
from datetime import datetime
return datetime.utcnow().isoformat()
Module 3: AI Memory & Interaction Layer
3.1 LLM Integration
Create backend/app/services/llm_service.py
:
import openai
from app.core.config import settings
import json
import logging
from typing import Dict, List, Any
logger = logging.getLogger(__name__)
class LLMService:
def __init__(self):
self.client = openai.OpenAI(api_key=settings.OPENAI_API_KEY)
self.system_prompt = """
You are Alex, an AI sales assistant helping close deals. Your goals:
1. Listen for customer objections and provide helpful suggestions
2. Identify buying signals and recommend next steps
3. Summarize key discussion points when asked
4. Never interrupt unless explicitly requested
Respond in JSON format:
{
"action": "speak|hint|analyze|summarize",
"content": "your response text",
"confidence": 0.0-1.0,
"urgency": "low|medium|high",
"context": "relevant context or reasoning"
}
"""
async def analyze_conversation(self,
transcript: str,
conversation_history: List[Dict],
meeting_context: Dict) -> Dict[str, Any]:
"""Analyze conversation and generate response"""
try:
messages = [
{"role": "system", "content": self.system_prompt},
{"role": "user", "content": f"""
Meeting Context: {json.dumps(meeting_context)}
Recent History: {json.dumps(conversation_history[-10:])}
Latest Transcript: {transcript}
Analyze this conversation and determine the best action.
"""}
]
response = await self.client.chat.completions.create(
model="gpt-4o",
messages=messages,
temperature=0.7,
max_tokens=500
)
content = response.choices[0].message.content
return json.loads(content)
except Exception as e:
logger.error(f"LLM Error: {e}")
return {
"action": "analyze",
"content": "Unable to analyze conversation",
"confidence": 0.0,
"urgency": "low"
}
async def generate_summary(self, full_transcript: str, meeting_details: Dict) -> Dict:
"""Generate meeting summary"""
try:
messages = [
{"role": "system", "content": """
Generate a comprehensive meeting summary in JSON format:
{
"summary": "Brief overview of the meeting",
"key_points": ["list of main discussion points"],
"action_items": [{"task": "description", "owner": "person", "deadline": "date"}],
"next_steps": ["immediate follow-up actions"],
"sentiment": "positive|neutral|negative",
"deal_stage": "prospecting|qualification|proposal|negotiation|closing|won|lost"
}
"""},
{"role": "user", "content": f"""
Meeting Details: {json.dumps(meeting_details)}
Full Transcript: {full_transcript}
Generate a comprehensive summary.
"""}
]
response = await self.client.chat.completions.create(
model="gpt-4o",
messages=messages,
temperature=0.3,
max_tokens=1000
)
return json.loads(response.choices[0].message.content)
except Exception as e:
logger.error(f"Summary generation error: {e}")
return {"error": "Failed to generate summary"}
3.2 Memory Management
Create backend/app/services/memory_service.py
:
import redis
import json
from typing import List, Dict, Any
from app.core.config import settings
import logging
logger = logging.getLogger(__name__)
class MemoryService:
def __init__(self):
self.redis_client = redis.from_url(settings.REDIS_URL)
self.conversation_ttl = 3600 # 1 hour
def store_conversation_context(self, call_session_id: str, context: Dict):
"""Store conversation context in Redis"""
key = f"conversation:{call_session_id}"
self.redis_client.lpush(key, json.dumps(context))
self.redis_client.expire(key, self.conversation_ttl)
# Keep only last 50 messages
self.redis_client.ltrim(key, 0, 49)
def get_conversation_history(self, call_session_id: str) -> List[Dict]:
"""Retrieve conversation history"""
key = f"conversation:{call_session_id}"
messages = self.redis_client.lrange(key, 0, -1)
return [json.loads(msg) for msg in messages]
def store_meeting_metadata(self, meeting_id: str, metadata: Dict):
"""Store meeting metadata"""
key = f"meeting:{meeting_id}"
self.redis_client.hset(key, mapping=metadata)
self.redis_client.expire(key, self.conversation_ttl)
def get_meeting_metadata(self, meeting_id: str) -> Dict:
"""Retrieve meeting metadata"""
key = f"meeting:{meeting_id}"
return self.redis_client.hgetall(key)
def clear_session_data(self, call_session_id: str):
"""Clear session data after call ends"""
conv_key = f"conversation:{call_session_id}"
self.redis_client.delete(conv_key)
Module 4: User Interface & External Systems
4.1 Frontend Setup (React)
Create frontend/package.json
:
{
"name": "ai-sales-agent-frontend",
"version": "0.1.0",
"private": true,
"dependencies": {
"react": "^18.2.0",
"react-dom": "^18.2.0",
"react-router-dom": "^6.8.0",
"axios": "^1.6.0",
"socket.io-client": "^4.7.4",
"tailwindcss": "^3.3.6",
"recharts": "^2.8.0",
"date-fns": "^2.30.0",
"@heroicons/react": "^2.0.18"
},
"scripts": {
"start": "react-scripts start",
"build": "react-scripts build",
"test": "react-scripts test",
"eject": "react-scripts eject"
},
"eslintConfig": {
"extends": [
"react-app",
"react-app/jest"
]
},
"browserslist": {
"production": [
">0.2%",
"not dead",
"not op_mini all"
],
"development": [
"last 1 chrome version",
"last 1 firefox version",
"last 1 safari version"
]
}
}
4.2 WebSocket Integration
Create frontend/src/services/websocket.js
:
import io from 'socket.io-client';
class WebSocketService {
constructor() {
this.socket = null;
this.callbacks = {};
}
connect(userId, token) {
this.socket = io(`ws://localhost:8000/ws/${userId}`, {
auth: { token }
});
this.socket.on('connect', () => {
console.log('Connected to WebSocket');
});
this.socket.on('disconnect', () => {
console.log('Disconnected from WebSocket');
});
this.socket.on('ai_hint', (data) => {
if (this.callbacks.ai_hint) {
this.callbacks.ai_hint(data);
}
});
this.socket.on('call_update', (data) => {
if (this.callbacks.call_update) {
this.callbacks.call_update(data);
}
});
}
on(event, callback) {
this.callbacks[event] = callback;
}
disconnect() {
if (this.socket) {
this.socket.disconnect();
}
}
}
export default new WebSocketService();
Module 5: Deployment & Operations
5.1 Docker Configuration
Create docker-compose.yml
:
version: '3.8'
services:
backend:
build: ./backend
ports:
- "8000:8000"
environment:
- DATABASE_URL=postgresql://postgres:password@db:5432/ai_sales_agent
- REDIS_URL=redis://redis:6379
depends_on:
- db
- redis
volumes:
- ./backend:/app
command: uvicorn app.main:app --host 0.0.0.0 --port 8000 --reload
frontend:
build: ./frontend
ports:
- "3000:3000"
volumes:
- ./frontend:/app
command: npm start
db:
image: postgres:14
environment:
- POSTGRES_DB=ai_sales_agent
- POSTGRES_USER=postgres
- POSTGRES_PASSWORD=password
volumes:
- postgres_data:/var/lib/postgresql/data
ports:
- "5432:5432"
redis:
image: redis:6-alpine
ports:
- "6379:6379"
celery_worker:
build: ./backend
command: celery -A app.celery worker --loglevel=info
depends_on:
- db
- redis
environment:
- DATABASE_URL=postgresql://postgres:password@db:5432/ai_sales_agent
- REDIS_URL=redis://redis:6379
volumes:
- ./backend:/app
volumes:
postgres_data:
5.2 Production Deployment Script
Create scripts/deploy.sh
:
#!/bin/bash
# Production deployment script
echo "Starting AI Sales Agent deployment..."
# Build and push Docker images
docker build -t ai-sales-agent-backend:latest ./backend
docker build -t ai-sales-agent-frontend:latest ./frontend
# Tag for ECR/DockerHub
docker tag ai-sales-agent-backend:latest $ECR_REGISTRY/ai-sales-agent-backend:latest
docker tag ai-sales-agent-frontend:latest $ECR_REGISTRY/ai-sales-agent-frontend:latest
# Push to registry
docker push $ECR_REGISTRY/ai-sales-agent-backend:latest
docker push $ECR_REGISTRY/ai-sales-agent-frontend:latest
# Deploy to ECS/Kubernetes
kubectl apply -f k8s/
# or
# aws ecs update-service --cluster production --service ai-sales-agent --force-new-deployment
echo "Deployment completed successfully!"
5.3 Monitoring & Health Checks
Create backend/app/api/endpoints/health.py
:
from fastapi import APIRouter, Depends
from sqlalchemy.orm import Session
from app.db.database import get_db
from app.services.memory_service import MemoryService
import redis
import logging
from datetime import datetime
router = APIRouter()
logger = logging.getLogger(__name__)
@router.get("/health")
async def health_check():
return {"status": "healthy", "version": "1.0.0"}
@router.get("/health/detailed")
async def detailed_health_check(db: Session = Depends(get_db)):
health_status = {
"database": "unknown",
"redis": "unknown",
"external_apis": "unknown"
}
# Check database
try:
db.execute("SELECT 1")
health_status["database"] = "healthy"
except Exception as e:
logger.error(f"Database health check failed: {e}")
health_status["database"] = "unhealthy"
# Check Redis
try:
memory_service = MemoryService()
memory_service.redis_client.ping()
health_status["redis"] = "healthy"
except Exception as e:
logger.error(f"Redis health check failed: {e}")
health_status["redis"] = "unhealthy"
# Check external APIs (basic connectivity)
try:
# Add actual API health checks here
health_status["external_apis"] = "healthy"
except Exception as e:
logger.error(f"External API health check failed: {e}")
health_status["external_apis"] = "unhealthy"
overall_status = "healthy" if all(
status == "healthy" for status in health_status.values()
) else "unhealthy"
return {
"status": overall_status,
"components": health_status,
"timestamp": datetime.utcnow().isoformat()
}
The architecture above supports real-time audio processing, intelligent conversation analysis, and scalable deployment across modern cloud platforms. This comprehensive implementation guide provides the foundation for building a production-ready AI Sales Agent system. The code provided in this guide is to provide a clear structure, to access the full code application, you can request below.