Intelligent AI Sales Agent

Project Documentation: Intelligent AI Sales Agent

Intelligent AI Sales Agent

An AI-powered sales agent designed to autonomously join scheduled sales calls, assist with sales processes, persuasion, and deal-closing, and automatically send meeting summaries and updates to the team.

Project Brief

What is the Project?

This project is the development of an "Intelligent AI Sales Agent," designed to function as an autonomous virtual team member for B2B sales teams. Its primary role is to actively participate in sales calls, providing real-time support to the human sales representative. The system will be managed through a central dashboard that displays details of all past and upcoming scheduled meetings, serving as a single source of truth for call-related activities and performance.

The Problem (What We Are Solving)

B2B sales cycles are complex and demanding, placing significant pressure on sales representatives to perform consistently at a high level. The current manual approach to sales calls is fraught with inefficiencies and missed opportunities that this project aims to solve:

  • In-Call Performance Gaps: Struggles with engaging customers, handling objections, and recalling critical information in real-time.
  • Post-Call Administrative Burden: Significant time wasted on manual tasks like writing summaries and updating the CRM.
  • Lost Revenue Opportunities: Inefficiency in closing deals and securing follow-ups, often due to missed buying signals.
  • Operational & Scalability Issues: Inconsistent call quality across the team and limited accessibility due to time zones.

The Solution (What We Are Building)

We will build an intelligent AI Sales Agent that functions as an active and audible participant in sales calls. This agent will join meetings as a virtual team member, capable of speaking to both the customer and the internal salesperson to guide the conversation, handle administrative queries, and ensure a smooth, professional interaction.

  • Act as a Conversational Co-host: The AI can introduce itself, summarize discussions, and explain standard product features.
  • Provide Real-Time In-Call Intelligence: Offers private, on-screen support with contextual data and suggested talking points.
  • Automate Administrative Tasks: Automatically generates meeting summaries, extracts action items, and updates the CRM.
  • Ensure Consistent Quality and Strategy: Standardizes the quality of sales calls by audibly guiding conversations.
  • Create a Centralized Hub for Insights: Provides a dashboard with all call data for performance review and coaching.

Core Features

  • Autonomous Call Participation
  • Conversational Voice Interaction
  • Real-time Objection Handling
  • Live Transcription & Note-Taking
  • Automated Meeting Summaries
  • CRM & Calendar Integration
  • Analytics & Coaching Dashboard

Technical Specification

Technologies & Tool Stack

Component Technology Reasoning
Call & Meeting Integration Zoom API, MS Graph API, Google Calendar API To schedule and gain access to meetings, manage participants, and get the necessary permissions.
Telephony & Audio Stream Twilio For handling the raw voice stream in and out of the meeting platforms.
Speech-to-Text (STT) Google Cloud Speech-to-Text / Deepgram Essential for converting the live audio stream into text with high accuracy.
AI Core (The "Brain") Google Gemini / OpenAI GPT-4o State-of-the-art LLMs for understanding conversations, recognizing intent, and generating responses.
Text-to-Speech (TTS) ElevenLabs / Google Cloud TTS To provide a natural, human-like voice for the agent.
AI Memory Stores Redis, Pinecone, Snowflake For short-term context recall (Redis), long-term strategy retrieval (Vector DB), and analytics (Data Warehouse).
Backend Framework Python (FastAPI) High-performance framework with an excellent AI ecosystem.
Database PostgreSQL / MySQL To store structured data like user accounts, meeting records, and summaries.
Frontend (Dashboard) React / Vue.js Modern frameworks for building a responsive and interactive user dashboard.
Deployment Docker, AWS/GCP For containerization, consistency, and scalable cloud hosting.

System Architecture Diagram

Meeting Platforms Zoom, Teams, Meet Audio Stream Twilio Speech-to-Text Deepgram/Google AI Core Brain GPT-4o/Gemini Intent Recognition Response Generation Short-term Memory Redis Long-term Memory Pinecone/Weaviate Text-to-Speech ElevenLabs Backend API FastAPI WebSocket Server Task Queue Database PostgreSQL Frontend Dashboard React/Vue.js Real-time Updates CRM Integration Salesforce/HubSpot Analytics Snowflake Audio Stream Audio Transcript Context History Response Voice Control Store Updates Analytics

Enhanced Building Guide: Technical Implementation Details

Prerequisites & Environment Setup

System Requirements:

- Python 3.9+
- Node.js 18+
- Docker & Docker Compose
- PostgreSQL 14+
- Redis 6+

Development Environment Setup:

# Create project directory
mkdir ai-sales-agent
cd ai-sales-agent

# Initialize Git repository
git init

# Create virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Create project structure
mkdir -p {backend,frontend,docker,scripts,tests}
mkdir -p backend/{app,alembic,tests}
mkdir -p backend/app/{api,core,db,models,services,utils}

Module 1: Foundation & Core Infrastructure

1.1 Backend Setup with FastAPI

Create backend/requirements.txt:


fastapi==0.104.1
uvicorn[standard]==0.24.0
sqlalchemy==2.0.23
alembic==1.12.1
psycopg2-binary==2.9.9
redis==5.0.1
celery==5.3.4
python-multipart==0.0.6
python-jose[cryptography]==3.3.0
passlib[bcrypt]==1.7.4
twilio==8.10.0
openai==1.3.6
google-cloud-speech==2.21.0
elevenlabs==0.2.26
websockets==12.0
pytest==7.4.3
httpx==0.25.2

Create backend/app/main.py:

from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from fastapi.middleware.cors import CORSMiddleware
from app.api.endpoints import auth, meetings, calls
from app.core.config import settings
from app.db.database import engine, Base
import logging

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Create database tables
Base.metadata.create_all(bind=engine)

app = FastAPI(
    title="AI Sales Agent API",
    description="Intelligent AI Sales Agent Backend",
    version="1.0.0"
)

# CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=settings.ALLOWED_HOSTS,
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Include routers
app.include_router(auth.router, prefix="/api/v1/auth", tags=["auth"])
app.include_router(meetings.router, prefix="/api/v1/meetings", tags=["meetings"])
app.include_router(calls.router, prefix="/api/v1/calls", tags=["calls"])

# WebSocket manager for real-time updates
class ConnectionManager:
    def __init__(self):
        self.active_connections: dict = {}
    
    async def connect(self, websocket: WebSocket, user_id: str):
        await websocket.accept()
        self.active_connections[user_id] = websocket
        logger.info(f"User {user_id} connected")
    
    def disconnect(self, user_id: str):
        if user_id in self.active_connections:
            del self.active_connections[user_id]
            logger.info(f"User {user_id} disconnected")
    
    async def send_personal_message(self, message: str, user_id: str):
        if user_id in self.active_connections:
            await self.active_connections[user_id].send_text(message)

manager = ConnectionManager()

@app.websocket("/ws/{user_id}")
async def websocket_endpoint(websocket: WebSocket, user_id: str):
    await manager.connect(websocket, user_id)
    try:
        while True:
            await websocket.receive_text()
    except WebSocketDisconnect:
        manager.disconnect(user_id)

@app.get("/health")
async def health_check():
    return {"status": "healthy"}

1.2 Database Models

Create backend/app/models/models.py:

from sqlalchemy import Column, Integer, String, DateTime, Text, JSON, Boolean, ForeignKey
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship
from datetime import datetime

Base = declarative_base()

class User(Base):
    __tablename__ = "users"
    
    id = Column(Integer, primary_key=True, index=True)
    email = Column(String, unique=True, index=True)
    hashed_password = Column(String)
    full_name = Column(String)
    is_active = Column(Boolean, default=True)
    created_at = Column(DateTime, default=datetime.utcnow)
    
    meetings = relationship("Meeting", back_populates="owner")

class Meeting(Base):
    __tablename__ = "meetings"
    
    id = Column(Integer, primary_key=True, index=True)
    title = Column(String)
    description = Column(Text)
    start_time = Column(DateTime)
    end_time = Column(DateTime)
    meeting_url = Column(String)
    platform = Column(String)  # zoom, teams, meet
    status = Column(String, default="scheduled")  # scheduled, in_progress, completed
    owner_id = Column(Integer, ForeignKey("users.id"))
    external_meeting_id = Column(String)
    
    owner = relationship("User", back_populates="meetings")
    call_sessions = relationship("CallSession", back_populates="meeting")

class CallSession(Base):
    __tablename__ = "call_sessions"
    
    id = Column(Integer, primary_key=True, index=True)
    meeting_id = Column(Integer, ForeignKey("meetings.id"))
    twilio_call_sid = Column(String)
    start_time = Column(DateTime, default=datetime.utcnow)
    end_time = Column(DateTime)
    status = Column(String, default="active")  # active, completed, failed
    
    meeting = relationship("Meeting", back_populates="call_sessions")
    transcripts = relationship("Transcript", back_populates="call_session")

class Transcript(Base):
    __tablename__ = "transcripts"
    
    id = Column(Integer, primary_key=True, index=True)
    call_session_id = Column(Integer, ForeignKey("call_sessions.id"))
    speaker = Column(String)
    content = Column(Text)
    timestamp = Column(DateTime, default=datetime.utcnow)
    confidence = Column(String)
    
    call_session = relationship("CallSession", back_populates="transcripts")

class Summary(Base):
    __tablename__ = "summaries"
    
    id = Column(Integer, primary_key=True, index=True)
    call_session_id = Column(Integer, ForeignKey("call_sessions.id"))
    summary_text = Column(Text)
    action_items = Column(JSON)
    key_insights = Column(JSON)
    sentiment_analysis = Column(JSON)
    created_at = Column(DateTime, default=datetime.utcnow)

1.3 Configuration Management

Create backend/app/core/config.py:

from pydantic_settings import BaseSettings
from typing import List

class Settings(BaseSettings):
    # Database
    DATABASE_URL: str = "postgresql://user:password@localhost/ai_sales_agent"
    
    # Redis
    REDIS_URL: str = "redis://localhost:6379"
    
    # JWT
    SECRET_KEY: str = "your-secret-key-here"
    ALGORITHM: str = "HS256"
    ACCESS_TOKEN_EXPIRE_MINUTES: int = 30
    
    # External APIs
    TWILIO_ACCOUNT_SID: str
    TWILIO_AUTH_TOKEN: str
    TWILIO_PHONE_NUMBER: str
    
    OPENAI_API_KEY: str
    GOOGLE_CLOUD_PROJECT: str
    ELEVENLABS_API_KEY: str
    
    # Meeting platforms
    ZOOM_CLIENT_ID: str
    ZOOM_CLIENT_SECRET: str
    MICROSOFT_CLIENT_ID: str
    MICROSOFT_CLIENT_SECRET: str
    
    # App settings
    ALLOWED_HOSTS: List[str] = ["http://localhost:3000", "http://127.0.0.1:3000"]
    
    class Config:
        env_file = ".env"

settings = Settings()

Module 2: Real-time Processing Engine

2.1 Twilio Integration

Create backend/app/services/twilio_service.py:

from twilio.rest import Client
from twilio.twiml.voice_response import VoiceResponse, Start, Connect, Stream
from app.core.config import settings
import logging

logger = logging.getLogger(__name__)

class TwilioService:
    def __init__(self):
        self.client = Client(settings.TWILIO_ACCOUNT_SID, settings.TWILIO_AUTH_TOKEN)
    
    def initiate_call(self, to_number: str, meeting_id: str):
        """Initiate a call to join a meeting"""
        try:
            call = self.client.calls.create(
                url=f"https://your-domain.com/api/v1/calls/twiml/join/{meeting_id}",
                to=to_number,
                from_=settings.TWILIO_PHONE_NUMBER
            )
            return call.sid
        except Exception as e:
            logger.error(f"Failed to initiate call: {e}")
            raise
    
    def generate_join_twiml(self, meeting_url: str):
        """Generate TwiML to join meeting and start streaming"""
        response = VoiceResponse()
        
        # Start audio streaming
        start = Start()
        stream = Stream(
            url=f"wss://your-domain.com/api/v1/calls/stream",
            track="both_tracks"
        )
        start.append(stream)
        response.append(start)
        
        # Connect to meeting
        connect = Connect()
        connect.conference(meeting_url)
        response.append(connect)
        
        return str(response)

2.2 Speech-to-Text Integration

Create backend/app/services/stt_service.py:

from google.cloud import speech
import asyncio
import json
import logging
from typing import AsyncGenerator

logger = logging.getLogger(__name__)

class STTService:
    def __init__(self):
        self.client = speech.SpeechClient()
        self.config = speech.RecognitionConfig(
            encoding=speech.RecognitionConfig.AudioEncoding.MULAW,
            sample_rate_hertz=8000,
            language_code="en-US",
            enable_speaker_diarization=True,
            diarization_speaker_count=2,
            enable_automatic_punctuation=True,
            model="latest_short"
        )
        self.streaming_config = speech.StreamingRecognitionConfig(
            config=self.config,
            interim_results=True,
            single_utterance=False
        )
    
    async def transcribe_stream(self, audio_stream: AsyncGenerator) -> AsyncGenerator:
        """Transcribe audio stream in real-time"""
        try:
            requests = (speech.StreamingRecognizeRequest(audio_content=chunk)
                       async for chunk in audio_stream)
            
            responses = self.client.streaming_recognize(
                config=self.streaming_config,
                requests=requests
            )
            
            for response in responses:
                for result in response.results:
                    if result.is_final:
                        yield {
                            'transcript': result.alternatives[0].transcript,
                            'confidence': result.alternatives[0].confidence,
                            'speaker': self._get_speaker_tag(result),
                            'timestamp': self._get_timestamp()
                        }
        except Exception as e:
            logger.error(f"STT Error: {e}")
            raise
    
    def _get_speaker_tag(self, result):
        """Extract speaker information from diarization"""
        if result.alternatives[0].words:
            return f"Speaker_{result.alternatives[0].words[0].speaker_tag}"
        return "Unknown"
    
    def _get_timestamp(self):
        """Get current timestamp"""
        from datetime import datetime
        return datetime.utcnow().isoformat()

Module 3: AI Memory & Interaction Layer

3.1 LLM Integration

Create backend/app/services/llm_service.py:

import openai
from app.core.config import settings
import json
import logging
from typing import Dict, List, Any

logger = logging.getLogger(__name__)

class LLMService:
    def __init__(self):
        self.client = openai.OpenAI(api_key=settings.OPENAI_API_KEY)
        self.system_prompt = """
        You are Alex, an AI sales assistant helping close deals. Your goals:
        1. Listen for customer objections and provide helpful suggestions
        2. Identify buying signals and recommend next steps
        3. Summarize key discussion points when asked
        4. Never interrupt unless explicitly requested
        
        Respond in JSON format:
        {
            "action": "speak|hint|analyze|summarize",
            "content": "your response text",
            "confidence": 0.0-1.0,
            "urgency": "low|medium|high",
            "context": "relevant context or reasoning"
        }
        """
    
    async def analyze_conversation(self, 
                                 transcript: str, 
                                 conversation_history: List[Dict],
                                 meeting_context: Dict) -> Dict[str, Any]:
        """Analyze conversation and generate response"""
        try:
            messages = [
                {"role": "system", "content": self.system_prompt},
                {"role": "user", "content": f"""
                Meeting Context: {json.dumps(meeting_context)}
                Recent History: {json.dumps(conversation_history[-10:])}
                Latest Transcript: {transcript}
                
                Analyze this conversation and determine the best action.
                """}
            ]
            
            response = await self.client.chat.completions.create(
                model="gpt-4o",
                messages=messages,
                temperature=0.7,
                max_tokens=500
            )
            
            content = response.choices[0].message.content
            return json.loads(content)
            
        except Exception as e:
            logger.error(f"LLM Error: {e}")
            return {
                "action": "analyze",
                "content": "Unable to analyze conversation",
                "confidence": 0.0,
                "urgency": "low"
            }
    
    async def generate_summary(self, full_transcript: str, meeting_details: Dict) -> Dict:
        """Generate meeting summary"""
        try:
            messages = [
                {"role": "system", "content": """
                Generate a comprehensive meeting summary in JSON format:
                {
                    "summary": "Brief overview of the meeting",
                    "key_points": ["list of main discussion points"],
                    "action_items": [{"task": "description", "owner": "person", "deadline": "date"}],
                    "next_steps": ["immediate follow-up actions"],
                    "sentiment": "positive|neutral|negative",
                    "deal_stage": "prospecting|qualification|proposal|negotiation|closing|won|lost"
                }
                """},
                {"role": "user", "content": f"""
                Meeting Details: {json.dumps(meeting_details)}
                Full Transcript: {full_transcript}
                
                Generate a comprehensive summary.
                """}
            ]
            
            response = await self.client.chat.completions.create(
                model="gpt-4o",
                messages=messages,
                temperature=0.3,
                max_tokens=1000
            )
            
            return json.loads(response.choices[0].message.content)
            
        except Exception as e:
            logger.error(f"Summary generation error: {e}")
            return {"error": "Failed to generate summary"}

3.2 Memory Management

Create backend/app/services/memory_service.py:

import redis
import json
from typing import List, Dict, Any
from app.core.config import settings
import logging

logger = logging.getLogger(__name__)

class MemoryService:
    def __init__(self):
        self.redis_client = redis.from_url(settings.REDIS_URL)
        self.conversation_ttl = 3600  # 1 hour
    
    def store_conversation_context(self, call_session_id: str, context: Dict):
        """Store conversation context in Redis"""
        key = f"conversation:{call_session_id}"
        self.redis_client.lpush(key, json.dumps(context))
        self.redis_client.expire(key, self.conversation_ttl)
        # Keep only last 50 messages
        self.redis_client.ltrim(key, 0, 49)
    
    def get_conversation_history(self, call_session_id: str) -> List[Dict]:
        """Retrieve conversation history"""
        key = f"conversation:{call_session_id}"
        messages = self.redis_client.lrange(key, 0, -1)
        return [json.loads(msg) for msg in messages]
    
    def store_meeting_metadata(self, meeting_id: str, metadata: Dict):
        """Store meeting metadata"""
        key = f"meeting:{meeting_id}"
        self.redis_client.hset(key, mapping=metadata)
        self.redis_client.expire(key, self.conversation_ttl)
    
    def get_meeting_metadata(self, meeting_id: str) -> Dict:
        """Retrieve meeting metadata"""
        key = f"meeting:{meeting_id}"
        return self.redis_client.hgetall(key)
    
    def clear_session_data(self, call_session_id: str):
        """Clear session data after call ends"""
        conv_key = f"conversation:{call_session_id}"
        self.redis_client.delete(conv_key)

Module 4: User Interface & External Systems

4.1 Frontend Setup (React)

Create frontend/package.json:

{
  "name": "ai-sales-agent-frontend",
  "version": "0.1.0",
  "private": true,
  "dependencies": {
    "react": "^18.2.0",
    "react-dom": "^18.2.0",
    "react-router-dom": "^6.8.0",
    "axios": "^1.6.0",
    "socket.io-client": "^4.7.4",
    "tailwindcss": "^3.3.6",
    "recharts": "^2.8.0",
    "date-fns": "^2.30.0",
    "@heroicons/react": "^2.0.18"
  },
  "scripts": {
    "start": "react-scripts start",
    "build": "react-scripts build",
    "test": "react-scripts test",
    "eject": "react-scripts eject"
  },
  "eslintConfig": {
    "extends": [
      "react-app",
      "react-app/jest"
    ]
  },
  "browserslist": {
    "production": [
      ">0.2%",
      "not dead",
      "not op_mini all"
    ],
    "development": [
      "last 1 chrome version",
      "last 1 firefox version",
      "last 1 safari version"
    ]
  }
}

4.2 WebSocket Integration

Create frontend/src/services/websocket.js:

import io from 'socket.io-client';

class WebSocketService {
  constructor() {
    this.socket = null;
    this.callbacks = {};
  }

  connect(userId, token) {
    this.socket = io(`ws://localhost:8000/ws/${userId}`, {
      auth: { token }
    });

    this.socket.on('connect', () => {
      console.log('Connected to WebSocket');
    });

    this.socket.on('disconnect', () => {
      console.log('Disconnected from WebSocket');
    });

    this.socket.on('ai_hint', (data) => {
      if (this.callbacks.ai_hint) {
        this.callbacks.ai_hint(data);
      }
    });

    this.socket.on('call_update', (data) => {
      if (this.callbacks.call_update) {
        this.callbacks.call_update(data);
      }
    });
  }

  on(event, callback) {
    this.callbacks[event] = callback;
  }

  disconnect() {
    if (this.socket) {
      this.socket.disconnect();
    }
  }
}

export default new WebSocketService();

Module 5: Deployment & Operations

5.1 Docker Configuration

Create docker-compose.yml:

version: '3.8'

services:
  backend:
    build: ./backend
    ports:
      - "8000:8000"
    environment:
      - DATABASE_URL=postgresql://postgres:password@db:5432/ai_sales_agent
      - REDIS_URL=redis://redis:6379
    depends_on:
      - db
      - redis
    volumes:
      - ./backend:/app
    command: uvicorn app.main:app --host 0.0.0.0 --port 8000 --reload

  frontend:
    build: ./frontend
    ports:
      - "3000:3000"
    volumes:
      - ./frontend:/app
    command: npm start

  db:
    image: postgres:14
    environment:
      - POSTGRES_DB=ai_sales_agent
      - POSTGRES_USER=postgres
      - POSTGRES_PASSWORD=password
    volumes:
      - postgres_data:/var/lib/postgresql/data
    ports:
      - "5432:5432"

  redis:
    image: redis:6-alpine
    ports:
      - "6379:6379"

  celery_worker:
    build: ./backend
    command: celery -A app.celery worker --loglevel=info
    depends_on:
      - db
      - redis
    environment:
      - DATABASE_URL=postgresql://postgres:password@db:5432/ai_sales_agent
      - REDIS_URL=redis://redis:6379
    volumes:
      - ./backend:/app

volumes:
  postgres_data:

5.2 Production Deployment Script

Create scripts/deploy.sh:

#!/bin/bash

# Production deployment script
echo "Starting AI Sales Agent deployment..."

# Build and push Docker images
docker build -t ai-sales-agent-backend:latest ./backend
docker build -t ai-sales-agent-frontend:latest ./frontend

# Tag for ECR/DockerHub
docker tag ai-sales-agent-backend:latest $ECR_REGISTRY/ai-sales-agent-backend:latest
docker tag ai-sales-agent-frontend:latest $ECR_REGISTRY/ai-sales-agent-frontend:latest

# Push to registry
docker push $ECR_REGISTRY/ai-sales-agent-backend:latest
docker push $ECR_REGISTRY/ai-sales-agent-frontend:latest

# Deploy to ECS/Kubernetes
kubectl apply -f k8s/
# or
# aws ecs update-service --cluster production --service ai-sales-agent --force-new-deployment

echo "Deployment completed successfully!"

5.3 Monitoring & Health Checks

Create backend/app/api/endpoints/health.py:

from fastapi import APIRouter, Depends
from sqlalchemy.orm import Session
from app.db.database import get_db
from app.services.memory_service import MemoryService
import redis
import logging
from datetime import datetime

router = APIRouter()
logger = logging.getLogger(__name__)

@router.get("/health")
async def health_check():
    return {"status": "healthy", "version": "1.0.0"}

@router.get("/health/detailed")
async def detailed_health_check(db: Session = Depends(get_db)):
    health_status = {
        "database": "unknown",
        "redis": "unknown",
        "external_apis": "unknown"
    }
    
    # Check database
    try:
        db.execute("SELECT 1")
        health_status["database"] = "healthy"
    except Exception as e:
        logger.error(f"Database health check failed: {e}")
        health_status["database"] = "unhealthy"
    
    # Check Redis
    try:
        memory_service = MemoryService()
        memory_service.redis_client.ping()
        health_status["redis"] = "healthy"
    except Exception as e:
        logger.error(f"Redis health check failed: {e}")
        health_status["redis"] = "unhealthy"
    
    # Check external APIs (basic connectivity)
    try:
        # Add actual API health checks here
        health_status["external_apis"] = "healthy"
    except Exception as e:
        logger.error(f"External API health check failed: {e}")
        health_status["external_apis"] = "unhealthy"
    
    overall_status = "healthy" if all(
        status == "healthy" for status in health_status.values()
    ) else "unhealthy"
    
    return {
        "status": overall_status,
        "components": health_status,
        "timestamp": datetime.utcnow().isoformat()
    }

The architecture above supports real-time audio processing, intelligent conversation analysis, and scalable deployment across modern cloud platforms. This comprehensive implementation guide provides the foundation for building a production-ready AI Sales Agent system. The code provided in this guide is to provide a clear structure, to access the full code application, you can request below.